Affiliation:
1. Meteorologisches Institut, Universität Hamburg, D-20146 Hamburg, Bundesstr. 55, Germany
Abstract
Observed near surface air and soil temperature time series reveal a long-term memory, which is associated with a power-law scaling of the frequency spectra, S(ω) ~ ω- β with β ~ 0.6, lying between white and flicker noise, 0 < β < 1. As this power law scaling is not consistent with the Brownian motion concept of climate variability, Fickian diffusion is added to a Newtonian cooling relaxation to provide a more suitable analog of climatic fluctuations: (i) Diffusive plus random heat fluxes parametrise the turbulent mixing by synoptic scale eddy life cycles, affect tropospheric and near surface temperatures and excite a long-term memory regime with a β ~ 0.5 scaling. (ii) Newtonian cooling describes the near surface temperatures relaxing towards a global mean deep soil temperature and stabilises the system to a white noise response at very low frequencies. The long-term memory regime emerges from the high frequency scaling (β ~ 1.5), once temperatures become correlated in space due to diffusion, so that spatially averaged fluctuations correlate for times beyond the diffusion time scale. The long-term memory regime disappears into a white noise plateau (β ~ 0), when low frequencies exceed the damping time scale of Newtonian cooling. This system may be interpreted as a diffusive system relaxing towards the deep soil restoration temperature with an almost infinitely large time scale.
Publisher
World Scientific Pub Co Pte Lt
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献