Affiliation:
1. Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
Abstract
In systems which combine slow and fast motions the averaging principle says that a good approximation of the slow motion can be obtained by averaging its parameters in fast variables. This setup arises, for instance, in perturbations of Hamiltonian systems where motions on constant energy manifolds are fast and across them are slow. When these perturbations are deterministic Anosov's theorem says that the averaging principle works except for a small in measure set of initial conditions while Neistadt's theorem gives error estimates in the case of perturbations of integrable Hamiltonian systems. These results are extended here to the case of fast and slow motions given by stochastic differential equations.
Publisher
World Scientific Pub Co Pte Lt
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献