LEARNING INDIRECT ACTIONS IN COMPLEX DOMAINS: ACTION SUGGESTIONS FOR AIR TRAFFIC CONTROL

Author:

AGOGINO ADRIAN1,TUMER KAGAN2

Affiliation:

1. UCSC, NASA Ames Research Center, Mailstop 269-3, Moffett Field, California 94035, USA

2. Oregon State University, 204 Rogers Hall, Corvallis, Oregon 97331, USA

Abstract

Providing intelligent algorithms to manage the ever-increasing flow of air traffic is critical to the efficiency and economic viability of air transportation systems. Yet, current automated solutions leave existing human controllers "out of the loop" rendering the potential solutions both technically dangerous (e.g. inability to react to suddenly developing conditions) and politically charged (e.g. role of air traffic controllers in a fully automated system). Instead, this paper outlines a distributed agent-based solution where agents provide suggestions to human controllers. Though conceptually pleasing, this approach introduces two critical research issues. First, the agent actions are now filtered through interactions with other agents, human controllers and the environment before leading to a system state. This indirect action-to-effect process creates a complex learning problem. Second, even in the best case, not all air traffic controllers will be willing or able to follow the agents' suggestions. This partial participation effect will require the system to be robust to the number of controllers that follow the agent suggestions. In this paper, we present an agent reward structure that allows agents to learn good actions in this indirect environment, and explore the ability of those suggestion agents to achieve good system level performance. We present a series of experiments based on real historical air traffic data combined with simulation of air traffic flow around the New York city area. Results show that the agents can improve system-wide performance by up to 20% over that of human controllers alone, and that these results degrade gracefully when the number of human controllers that follow the agents' suggestions declines.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3