Adaptive Agent-Driven Routing and Load Balancing in Communication Networks

Author:

Heusse Martin1,Snyers Dominique1,Guérin Sylvain1,Kuntz Pascale1

Affiliation:

1. ENST de Bretagne, BP 832, Brest Cedex, France

Abstract

This paper presents an unified overview of a new family of distributed algortithms for routing and load balancing in dynamic communication networks. These new algorithms are described as an extension to the classical routing algorithms: they combine the ideas of online asynchronous distance vector routing with adaptive link state routing. Estimates of the current traffic condition and link costs are measured by sending routing agents in the network that mix with the regular information packets and keep track of the costs (e.g. delay) encountered during their journey. The routing tables are then regularly updated based on that information without any central control nor complete knowledge of the network topology. Two new algorithms are proposed here. The first one is based on round trip routing agents that update the routing tables by backtracking their way after having reached the destination. The second one relies on forward agents that update the routing tables directly as they move toward their destination. An efficient co-operative scheme is proposed to deal with asymmetric connections. All these methods are compared on a simulated network with various traffic loads; the robustness of the new algorithms to network changes is proved on various dynamic scenarii.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Systems Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Software engineering for self-organizing systems;The Knowledge Engineering Review;2015-09

2. Application of Ant Colony Algorithm;Applied Mechanics and Materials;2014-04

3. Research on Application of Ant Colony Optimization;Applied Mechanics and Materials;2014-04

4. Termite-Hill;International Journal of Swarm Intelligence Research;2012-10

5. Network Routing;Mobile Agents in Networking and Distributed Computing;2012-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3