DETECTION OF DISJOINT AND OVERLAPPING MODULES IN WEIGHTED COMPLEX NETWORKS

Author:

BENNETT LAURA1,LIU SONGSONG2,PAPAGEORGIOU LAZAROS G.2,TSOKA SOPHIA1

Affiliation:

1. Department of Informatics, School of Natural and Mathematical Sciences, King's College London, Strand, London, WC2R 2LS, United Kingdom

2. Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom

Abstract

Community structure detection is widely accepted as a means of elucidating the functional properties of complex networks. The problem statement is ever evolving, with the aim of developing more flexible and realistic modeling procedures. For example, a first step in developing a more informative model is the inclusion of weighted interactions. In addition to the standard community structure problem, interest has increased in the detection of overlapping communities. Adopting such constraints may, in some cases, represent a more true to life abstraction of the system under study. In this paper, two novel mathematical programming algorithms for module detection are presented. First, disjoint modules in weighted and unweighted networks are detected by formulating modularity maximization as a mixed integer nonlinear programming (MINLP) model. The solution obtained is then used to detect overlapping modules through a further MINLP model. The inclusion of two parameters controlling the extent of overlapping offers flexibility in user requirements. Comparative results show that these methodologies perform competitively to previously proposed methods. The methodologies proposed here promote the detection of topological relationships in complex systems. Together with the amenable nature of mathematical programming models, we show that both algorithms offer a versatile solution to the community detection problem.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3