NEURAL CLASSIFICATION OF MASS ABNORMALITIES WITH DIFFERENT TYPES OF FEATURES IN DIGITAL MAMMOGRAPHY

Author:

PANCHAL R.1,VERMA B.1

Affiliation:

1. School of Information Technology, Central Queensland University, Rockhampton, QLD 4702, Australia

Abstract

Early detection of breast abnormalities remains the primary prevention against breast cancer despite the advances in breast cancer diagnosis and treatment. Presence of mass in breast tissues is highly indicative of breast cancer. The research work presented in this paper investigates the significance of different types of features using proposed neural network based classification technique to classify mass type of breast abnormalities in digital mammograms into malignant and benign. 14 gray level based features, four BI-RADS features, patient age feature and subtlety value feature have been explored using the proposed research methodology to attain maximum classification on test dataset. The proposed research technique attained a 91% testing classification rate with a 100% training classification rate on digital mammograms taken from the DDSM benchmark database.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3