Immigrants Based Adaptive Genetic Algorithms for Task Allocation in Multi-Robot Systems

Author:

Muhuri Pranab K1,Rauniyar Amit1

Affiliation:

1. Department of Computer Science, South Asian University, New Delhi 110021, India

Abstract

Optimal task allocation among the suitably formed robot groups is one of the key issues to be investigated for the smooth operations of multi-robot systems. Considering the complete execution of available tasks, the problem of assigning available resources (robot features) to the tasks is computationally complex, which may further increase if the number of tasks increases. Popularly this problem is known as multi-robot coalition formation (MRCF) problem. Genetic algorithms (GAs) have been found to be quite efficient in solving such complex computational problems. There are several GA-based approaches to solve MRCF problems but none of them have considered the dynamic GA variants. This paper considers immigrants-based GAs viz. random immigrants genetic algorithm (RIGA) and elitism based immigrants genetic algorithm (EIGA) for optimal task allocation in MRCF problem. Further, it reports a novel use of these algorithms making them adaptive with certain modifications in their traditional attributes by adaptively choosing the parameters of genetic operators and terms them as adaptive RIGA (aRIGA) and adaptive EIGA (aEIGA). Extensive simulation experiments are conducted for a comparative performance evaluation with respect to standard genetic algorithm (SGA) using three popular performance metrics. A statistical analysis with the analysis of variance has also been performed. It is demonstrated that RIGA and EIGA produce better solutions than SGA for both fixed and adaptive genetic operators. Among them, EIGA and aEIGA outperform RIGA and aRIGA, respectively.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3