The Exploitation of Distance Distributions for Clustering

Author:

Thrun Michael C.12

Affiliation:

1. Databionics Research Group, Philipps-University of Marburg, D-35032 Marburg, Germany

2. Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Germany

Abstract

Although distance measures are used in many machine learning algorithms, the literature on the context-independent selection and evaluation of distance measures is limited in the sense that prior knowledge is used. In cluster analysis, current studies evaluate the choice of distance measure after applying unsupervised methods based on error probabilities, implicitly setting the goal of reproducing predefined partitions in data. Such studies use clusters of data that are often based on the context of the data as well as the custom goal of the specific study. Depending on the data context, different properties for distance distributions are judged to be relevant for appropriate distance selection. However, if cluster analysis is based on the task of finding similar partitions of data, then the intrapartition distances should be smaller than the interpartition distances. By systematically investigating this specification using distribution analysis through the mirrored-density (MD plot), it is shown that multimodal distance distributions are preferable in cluster analysis. As a consequence, it is advantageous to model distance distributions with Gaussian mixtures prior to the evaluation phase of unsupervised methods. Experiments are performed on several artificial datasets and natural datasets for the task of clustering.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CF-Font: Content Fusion for Few-Shot Font Generation;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

2. How the different explanation classes impact trust calibration: The case of clinical decision support systems;International Journal of Human-Computer Studies;2023-01

3. Deriving Homogeneous Subsets from Gene Sets by Exploiting the Gene Ontology;Informatica;2023

4. Boost invariant polynomials for efficient jet tagging;Machine Learning: Science and Technology;2022-12-01

5. Identification of Explainable Structures in Data with a Human-in-the-Loop;KI - Künstliche Intelligenz;2022-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3