An Automatic Recognition System for Digital Collections of Indonesian Traditional Houses Using Convolutional Neural Networks for Cultural Heritage Preservation

Author:

Handhayani Teny1ORCID,Pawening Ageng Hadi2,Hendryli Janson1

Affiliation:

1. Fakultas Teknologi Informasi, Universitas Tarumanagara, Gedung R Lantai 11, Jl. Letjen S. Parman No. 1 Jakarta Barat 11440, Indonesia

2. Departemen IT, Kiriminaja, Yogyakarta, Indonesia

Abstract

Indonesia is one of the archipelago countries located in Asia and it has diverse cultures. In modern society, Indonesian traditional houses have become rare and need to be preserved. This research is conducted to build a digital collection and to develop an image-based automatic recognition system for Indonesian traditional houses. In this paper, the traditional house images are collected in several ways: on-site image captures, receiving images from volunteers, and collecting public images from Google. The dataset is limited to the collection of building shape images, excluding the interior design. The authors implement Convolutional Neural Networks (ConvNets) to build a model for an automatic recognition system. The experiments run some deep network models: VGG, DenseNet, Inception, Xception, MobileNetV2, NasNetMobile, and EfficientNet. The experiments involve 1526 images of 16 classes. EfficientNet-Lite0 outperforms other models and produces the average F1-score and accuracy of 90.1% and 91.8%, respectively. ConvNets also outperform conventional classifiers.

Funder

Universitar Tarumanagara

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Theoretical Computer Science,Software

Reference28 articles.

1. Deep learning

2. Batik Lasem images classification using voting feature intervals 5 and statistical features selection approach

3. T. Handhayani, J. Hendryli and L. Hiryanto, in Proc. 2017 1st Int. Conf. Informatics and Computational Sciences (Semarang, 2017), pp. 11–16.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3