HYBRID OF GENETIC ALGORITHM AND SIMULATED ANNEALING FOR SUPPORT VECTOR REGRESSION OPTIMIZATION IN RAINFALL FORECASTING

Author:

ZHU CHANGMING1,WU JIANSHENG23

Affiliation:

1. School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China

2. School of Information Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China

3. Department of Mathematical and Computer Sciences, Liuzhou Teachers College, Liuzhou, Guangxi 545004, China

Abstract

Accurate forecasting of rainfall has been one of the most important issues in hydrological research such as river training works and design of flood warning systems. Support vector regression (SVR) is a popular regression method in rainfall forecasting. Type of kernel function and kernel parameter setting in the SVR traing procedure, along with the input feature subset selection, significantly influence regression accuracy. In this paper, an effective hybrid optimization strategy by combining the strengths of genetic algorithm (GA) and simulated annealing (SA), is employed to simultaneously optimize the input feature subset selection, the type of kernel function and the kernel parameter setting of SVR, namely GASA–SVR. The developed GASA–SVR model is being applied for monthly rainfall forecasting in Guilin of Guangxi. The GA is carried out as a main frame of this hybrid algorithm while SA is used as a local search strategy to help GA jump out of local optima and avoid sinking into the local optimal solution early. Compared with SVR, pure GA–SVR and HGA–SVR, results show that the hybrid GASA–SVR model can correctly select the discriminating input features subset, successfully identify the optimal type of kernel function and all the optimal values of the parameters of SVR with the lowest prediction error values in rainfall forecasting, can also significantly improve the rainfall forecasting accuracy. Experimental results reveal that the predictions using the proposed approach are consistently better than those obtained using the other methods presented in this study in terms of the same measurements. Those results show that the proposed GASA–SVR model provides a promising alternative to monthly rainfall prediction.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3