An Energy-Efficient Clustering and Fuzzy-Based Path Selection for Flying Ad-Hoc Networks

Author:

Sugantha Priya S.1,Mohanraj M.1

Affiliation:

1. Department of Computer Science, Dr. SNS Rajalakshmi College of Arts and Science, Coimbatore, Tamil Nadu, India

Abstract

Flying Ad-hoc Networks (FANET) allow for an ad-hoc networking among Unmanned Aerial Vehicles (UAV), have recently gained popularity in a variety of military and non-militant applications. The existing work used the Glowworm Swarm Optimization (GSO) algorithm to create a self-organization depending on clustering technique for FANET. Owing to UAV increased mobility, network topology might vary over time, providing route discovery and maintenance is one of the most difficult tasks. And also, the network throughput is still more worsened by the network congestion. To solve this problem, the proposed work designed an energy efficient clustering and fuzzy-based path selection for FANET. In this work, initially, the clustering is performed using the UAV distance. For efficient communication and energy consumption, optimal selection of Cluster Head (CH) is performed by using Adaptive Mutation with Teaching-Learning-Based Optimization (AMTLBO) algorithm. To improve the optimal selection of CH nodes, the best fitness values are calculated. The fitness function depends on Link capacity, remaining energy and neighbor UAV distance. Next to that, nodes begin communications as well as transmit their information to their CH. Improved Fuzzy-based Routing (IFR) is introduced for improving the route discovery process. The goal is to find routes that have a high level of flying autonomy, minimal mobility, and a higher Received Signal Strength Indicator (RSSI). As a result, the energy usage of network is decreased, as well as the cluster’s lifespan is extended. Finally, an adaptive and reliable congestion detection mechanism is introduced to transmit the packets with congestion free path. The experimental result shows that the proposed AMTLBO system attains higher performance compared to the existing system in terms of energy usage, throughput, delay, overhead and packet delivery ratio.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A topology control algorithm for fusion networks based on link quality;MethodsX;2023-12

2. Energy Efficient Bio-Inspired Clustering in Flying Ad-Hoc Network;2023 International Conference on Networking and Advanced Systems (ICNAS);2023-10-21

3. Guest Editorial — Introduction to the Special Issue on Smart Fuzzy Optimization for Decision-Making in Uncertain Environments;International Journal of Computational Intelligence and Applications;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3