Affiliation:
1. Department of Computer Science Engineering, Koneru Lakshmaiah Education Foundation Greenfields, Vaddeswaram, Guntur 522502, Andhra Pradesh, India
2. Department of Artificial Intelligence & Machine Learning, P.A. College of Engineering, Affiliated to Visvesvaraya Technological University Belagavi, Mangalore, Karnataka, India
Abstract
Skin cancer is one of the most dangerous cancers that may occur for different age groups of people. As a result, early identification of skin cancer has the potential to save millions of lives. In Traditional machine learning approaches, there are various drawbacks in detection and classification of skin lesions. As a result, to achieve the robust performance, initially the joint trilateral and bilateral filter (JTBF) with convolutional auto encoder and decoder (CAED)-based preprocessing method is used to enhance the skin lesion and also removes hair from lesions. Then, transfer learning-based probabilistic multi-layer dense networks (PMDN) method-based unmanned Transfer learning segmentation method is adapted for accurately detecting the cancer region on skin lesions. Further, transfer learning convolution neural network (TL-CNN) is used to extract the features from the segmented region, which extracts the detailed inter-disease-dependent (IDD) and intra-disease specific (IDS) features. Finally, Alexa Net model is trained and tested with the IDD, IDS features and classifies the eight different skin cancer types. The complexity of the transfer learning networks is optimized by the using the Adam optimizer. Finally, the simulation results show that the proposed model resulted in superior segmentation, feature extraction, and classification performances as compared to conventional approaches. Further, the proposed method achieved 99.937% segmentation accuracy, 99.47% feature extraction accuracy, and 99.27% classification accuracy on ISIC-2019 public challenge dataset.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Science Applications,Theoretical Computer Science,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献