Soybean Leaf Diseases Recognition Based on Generative Adversarial Network and Transfer Learning

Author:

Yu Xiao1ORCID,Chen Cong1ORCID,Gong Qi1ORCID,Li Weihan1ORCID,Lu Lina2ORCID

Affiliation:

1. Department of Computer Science and Technology, Shandong University of Technology, Zibo, 255000, P. R. China

2. Department of Business School, Shandong University of Technology, Zibo, 255000, P. R. China

Abstract

Soybean leaf disease labeling data are not easy to obtain, and soybean leaf disease model training often needs a lot of data. Due to the limitations of fixed rules such as rotation and clipping, traditional data enhancement cannot generate images with diversity and variability. In view of the above problems, this study proposed a data enhancement method based on generative adversarial network to expand the original soybean leaf disease dataset. This method was based on cyclic confrontation network, and its discriminator uses dense connection strategy to realize feature reuse, so as to reduce the amount of calculation. In the training process, improved transfer learning is used to automatically fine tune the pre-training model. The accuracy of the optimized method in 9 kinds of soybean leaf disease image recognition is 95.84%, which is 0.98% higher than the traditional fine-tuning method. The experimental results show that this method based on generating confrontation network has significant ability in generating soybean leaf disease image, and can expand the existing dataset. In addition, this method also provides an effective data enhancement solution for the expansion of other crop disease image datasets.

Funder

This Project “Research on the interdisciplinary theory, method and application of plant phenotype data management” supported by Shandong Provincial Natural Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3