A Novel Approach of Weighted Support Vector Machine with Applied Chance Theory for Forecasting Air Pollution Phenomenon in Egypt

Author:

Eldakhly Nabil Mohamed1,Aboul-Ela Magdy1,Abdalla Areeg2

Affiliation:

1. Department of Computer Sciences and Information Systems, Sadat Academy for Management Sciences (SAMS), Corniche El Nil, Corniche El Maadi, 1st Maadi Entrance, Cairo, Egypt

2. Department of Mathematics, Faculty of Science, Cairo University, Street between chateaux, Giza, Egypt

Abstract

The particulate matter air pollutant of diameter less than 10 micrometers (PM[Formula: see text]), a category of pollutants including solid and liquid particles, can be a health hazard for several reasons: it can harm lung tissues and throat, aggravate asthma and increase respiratory illness. Accurate prediction models of PM[Formula: see text] concentrations are essential for proper management, control, and making public warning strategies. Therefore, machine learning techniques have the capability to develop methods or tools that can be used to discover unseen patterns from given data to solve a particular task or problem. The chance theory has advanced concepts pertinent to treat cases where both randomness and fuzziness play simultaneous roles at one time. The main objective is to study the modification of a single machine learning algorithm — support vector machine (SVM) — applying the chance weight of the target variable, based on the chance theory, to the corresponding dataset point to be superior to the ensemble machine learning algorithms. The results of this study are outperforming of the SVM algorithms when modifying and combining with the right theory/technique, especially the chance theory over other modern ensemble learning algorithms.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3