Hybrid Hierarchical Clustering — Piecewise Aggregate Approximation, with Applications

Author:

Zhang Yu1,Gallimore Michael1,Bingham Chris1,Chen Jun1,Xu Yong2

Affiliation:

1. School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK

2. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, P. R. China

Abstract

Piecewise Aggregate Approximation (PAA) provides a powerful yet computationally efficient tool for dimensionality reduction and Feature Extraction (FE) on large datasets compared to previously reported and well-used FE techniques, such as Principal Component Analysis (PCA). Nevertheless, performance can degrade as a result of either regional information insufficiency or over-segmentation, and because of this, additional relatively complex modifications have subsequently been reported, for instance, Adaptive Piecewise Constant Approximation (APCA). To recover some of the simplicity of the original PAA, whilst addressing the known problems, a distance-based Hierarchical Clustering (HC) technique is now proposed to adjust PAA segment frame sizes to focus segment density on information rich data regions. The efficacy of the resulting hybrid HC-PAA methodology is demonstrated using two application case studies viz. fault detection on industrial gas turbines and ultrasonic biometric face identification. Pattern recognition results show that the extracted features from the hybrid HC-PAA provide additional benefits with regard to both cluster separation and classification performance, compared to traditional PAA and APCA alternatives. The method is therefore demonstrated to provide a robust and readily implemented algorithm for rapid FE and identification for datasets.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3