Padeep: A Patched Deep Learning Based Model for Plants Recognition on Small Size Dataset: Chenopodiaceae Case Study

Author:

Heidary-Sharifabad Ahmad1,Zarchi Mohsen Sardari2,Zarei Gholamreza3

Affiliation:

1. Department of Computer Engineering, Maybod Branch, Islamic Azad University, Maybod, Iran

2. Department of Computer Engineering, Meybod University, Meybod, Iran

3. Department of Agronomy, Maybod Branch, Islamic Azad University, Maybod, Iran

Abstract

A large training sample is prerequisite for the successful training of each deep learning model for image classification. Collecting a large dataset is time-consuming and costly, especially for plants. When a large dataset is not available, the challenge is how to use a small or medium size dataset to train a deep model optimally. To overcome this challenge, a novel model is proposed to use the available small size plant dataset efficiently. This model focuses on data augmentation and aims to improve the learning accuracy by oversampling the dataset through representative image patches. To extract the relevant patches, ORB key points are detected in the training images and then image patches are extracted using an innovative algorithm. The extracted ORB image patches are used for dataset augmentation to avoid overfitting during the training phase. The proposed model is implemented using convolutional neural layers, where its structure is based on ResNet architecture. The proposed model is evaluated on a challenging ACHENY dataset. ACHENY is a Chenopodiaceae plant dataset, comprising 27030 images from 30 classes. The experimental results show that the patch-based strategy outperforms the classification accuracy achieved by traditional deep models by 9%.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Few-shot learning CNN optimized using combined 2D-DWT injection and evolutionary optimization algorithms for human face recognition;International Journal of Wavelets, Multiresolution and Information Processing;2023-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3