Hybrid Optimization Algorithm to Combine Neural Network for Rainfall-Runoff Modeling

Author:

Wu Jiansheng12

Affiliation:

1. Department of Mathematical and Computer Sciences, Guangxi Science & Technology Normal, Normal University, Liuzhou, Guangxi 546100, China

2. School of Information Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China

Abstract

Rainfall-runoff modeling is very important for Water Resources Management because accurate and timely prediction can avoid accidents, such as the life risk, economic losses, etc. This paper proposed the novel hybrid optimization algorithm to combine Neural Network (NN) for rainfall-runoff modeling, namely HGASA-NN. Firstly, a novel and specialized hybrid optimization strategy by incorporating Simulated Annealing algorithm (SA) into Genetic Algorithm (GA) was used to train the initial connection weights and thresholds of NN. Secondly, the Back Propagation (BP) algorithm was adjusted the final weights and biases. Finally, a numerical example of daily rainfall-runoff data was used to elucidate the forecasting performance of the proposed HGASA-NN model. The HGASA-NN can make use of not only strong global searching ability of the GASA, but also strong local searching ability of the BP algorithm. The forecasting results indicate that the proposed model yields more accurate forecasting results than the BP-NN and pure GA training NN model. Therefore, the HGASA-NN model is a promising alternative for rainfall-runoff forecasting.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Modified Sine Cosine Algorithm for Numerical Optimization;International Journal of Computational Intelligence and Applications;2024-04-25

2. Temperature prediction and analysis based on improved GA-BP neural network;AIMS Environmental Science;2022

3. Neural Network Data Mining Clustering Optimization Algorithm;IETE Journal of Research;2021-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3