Research on Fault Detection for Microservices Based on Log Information and Social Network Mechanism Using BiLSTM-DCNN Model

Author:

Guan Shuai-Peng1ORCID,Chen Zi-Hao1ORCID,Wu Pei-Xuan1ORCID,Guo Man-Yuan2ORCID

Affiliation:

1. Purification Equipment Research Institute of CSIC, P. R. China

2. Harbin Institute of Technology Software, Engineering Co., Ltd, P. R. China

Abstract

The microservice architecture breaks through the traditional cluster architecture mode based on virtual machines and uses containers as carriers to interact through lightweight communication mechanisms to reduce system coupling and provide more flexible system service support. With the expansion of the system scale, a large number of system logs with complex structures and chaotic relationships are generated. How to accurately analyze the system logs and make efficient fault prediction is particularly important for building a safe and reliable system. By studying neural network technology, this paper proposes an Attention-Based Bidirectional Long Short-Term Memory Network (Bi-LSTM). Combined with the dual channel convolutional neural network model (DCNN), it uses the attention mechanism to explore the differences between dimensional features, realizes multi-dimensional feature fusion, and establishes a BiLSTM-DCNN deep learning model that integrates the attention mechanism. From the perspective of social network analysis, a data preprocessing method is proposed to process fault redundant data and improve the accuracy of fault prediction under Microservices. Compare BiLSTM-DCNN with the mainstream system log analysis machine learning models SVM, CNN and Bi-LSTM, and explore the advantages of BiLSTM-DCNN in processing microservice system log text. The model is applied to simulation data and HDFS data set for experimental comparison, which proves the good generalization ability and universality of BiLSTM-DCNN.

Funder

National Key R&D Program of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3