A Filter-Based Improved Multi-Objective Equilibrium Optimizer for Single-Label and Multi-Label Feature Selection Problem

Author:

Wang Wendong1ORCID,Li Yu2ORCID,Liu Jingsen3ORCID,Zhou Huan4ORCID

Affiliation:

1. School of Business, Henan University, Kaifeng 475004, P. R. China

2. Institute of Management Science and Engineering and School of Business, Henan University, Kaifeng 475004, P. R. China

3. Institute of Intelligent Network Systems and Software School, Henan University Kaifeng 475004, P. R. China

4. School of Business, Henan University Kaifeng 475004, P. R. China

Abstract

Effectively reducing the dimensionality of big data and retaining its key information has been a research challenge. As an important step in data pre-processing, feature selection plays a critical role in reducing data size and increasing the overall value of the data. Many previous studies have focused on single-label feature selection, however, with the increasing variety of data types, the need for feature selection on multi-label data types has also arisen. Unlike single-labeled data, multi-labeled data with more combinations of classifications place higher demands on the capabilities of feature selection algorithms. In this paper, we propose a filter-based Multi-Objective Equilibrium Optimizer algorithm (MOEO-Smp) to solve the feature selection problem for both single-label and multi-label data. MOEO-Smp rates the optimization results of solutions and features based on four pairs of optimization principles, and builds three equilibrium pools to guide exploration and exploitation based on the total scores of solutions and features and the ranking of objective fitness values, respectively. Seven UCI single-label datasets and two Mulan multi-label datasets and one COVID-19 multi-label dataset are used to test the feature selection capability of MOEO-Smp, and the feature selection results are compared with 10 other state-of-the-art algorithms and evaluated using three and seven different metrics, respectively. Feature selection experiments and comparisons with the results in other literatures show that MOEO-Smp not only has the highest classification accuracy and excellent dimensionality reduction on single-labeled data, but also performs better on multi-label data in terms of Hamming loss, accuracy, dimensionality reduction, and so on.

Funder

National Natural Science Foundation of China

Science and Technology Department of Henan Province, China

Postgraduate Meritocracy Scheme, China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3