FPGA Implementation of Fuzzy Inference System Based Edge Detection Algorithm

Author:

Selvathi D.1,Selvaraj Henry2,Dharani J.3

Affiliation:

1. Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India

2. Department of Electrical and Computer Engineering, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA

3. Anjalai Ammal Mahalingam Engineering College, Tiruvarur, India

Abstract

Edge detection is a very important area in the field of Computer Vision. Edge detectors behave very poorly, their behavior may fall within tolerance in specific situations and have difficulty in adapting to different situations. Human vision is inherently a multiscale phenomenon and is sensitive to orientation and elongation. This work proposes the hardware implementation of efficient fuzzy logic based algorithm, which is used to detect the edges of an image without determining the threshold value. Edge detection in software is not suited for strong real-time applications. This problem is resolved by using hardware implementation on field programmable gate arrays (FPGAs). Fuzzy inference system is developed with four input pixel containing two fuzzy sets (FSs) one for white and another for black and one output pixel containing three FSs for white, black and edge. Fuzzy if-then rules are used to modify the membership functions. Finally, Mamdanidefuzzifier method is used to form the final edge image. For comparison, the same work was implemented using sobel operator. The hardware part is developed by using Verilog language. The FPGA implementation is targeted on Virtex5 Starter kit (xc5vlx50tff1136-1) and Virtex7 starter kit (xc7vx485tffq1157-1) using the updated Xilinx PlanAhead within the ISE 13.4 development suite. The edge thickness can be changed easily by adding new rules or changing output parameters. That is, rule-based approach has flexible structure that can be easily adapted to any time or anywhere and the new fuzzy approach produces better result than sobel operator. Experimental results show the ability and high performance of the proposed algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3