Enhanced Differential Evolution and Particle Swarm Optimization Approaches for Discovering High Utility Itemsets

Author:

Sukanya N. S.1,Thangaiah P. Ranjit Jeba2

Affiliation:

1. Department of Computer Science, Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, India

2. Department of Digital Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India

Abstract

Mining patterns from High-utility itemsets (HUIs) have been exploited recently in place of frequent itemset mining (FIMs) or association-rule mining (ARMs) as they highlight profitability of products where quantity and profits are taken into account. Several techniques for HUIs have been proposed and they encounter exponential search spaces which have more distinct items or voluminous databases. Alternatively, Evolutionary Computations (ECs)-based meta-heuristics algorithms can be effective in solving issues in HUIs since a set of near-optimal solutions can be obtained within restricted periods. Current ECs-based techniques consume more time to identify HUIs in transactional databases, discover unacceptable combinations of HUIs, and finally fail to discover HUIs when neighborhood searches are not executed locally and globally. To overcome these challenges, a HUI mining algorithm based on Differential Evolution (DE) and Particle Swarm Optimization (PSO) using multiple strategies including elitism, population diversifications, exclusive preservations, and neighborhood exploration techniques has been proposed. Thus, this work defines mining patterns based on DE and PSO to identify HUIs in voluminous transactional databases. The HUIM-DE-PSO-DE algorithm proposed in this work discovers more number of HUIs which is revealed in experimental results obtained from a set of benchmark data instances. Results are compared with existing approaches using several performance metrics including convergence speeds, minimum utility threshold values, and execution time consumed.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3