A Study of Digital Museum Collection Recommendation Algorithm Based on Improved Fuzzy Clustering Algorithm

Author:

Chen Yi1ORCID,Sun Jingsong1ORCID,Xu Ziyue1ORCID,Zhang Genglong1ORCID,Qi Naibin1ORCID,Song Yuchen1ORCID

Affiliation:

1. School of Arts and Design, Nanjing Vocational University of Industry Technology, Nanjing 210007, P. R. China

Abstract

With the rapid advancement of internet technology, various industries have accumulated vast amounts of data, including on user behavior and personal preferences. Traditional museums can leverage this user data to uncover individual preferences and offer personalized services to their visitors. However, the exponential growth of information has also led to the problem of information overload, making it challenging for users to find relevant information within the vast data landscape. Consequently, the utilization rate of available information decreases. By harnessing the power of cloud computing, big data analytics, and recommendation systems, museums can enhance visitors’ touring experiences by helping them discover collections aligned with their interests and connecting with like-minded individuals. To address this objective, the research focuses on optimizing the initial clustering centers of the fuzzy clustering algorithm and parallelizing the optimized algorithm using MapReduce, resulting in the development of a novel MapReduce-based k-prototype fuzzy c-means (MRKPFCM) algorithm. Subsequently, the MRKPFCM algorithm is combined with the classical collaborative filtering algorithm to create a hybrid and parallelized collaborative filtering recommendation algorithm, incorporating elements such as MRKPFCM, audience, and collection. This hybrid algorithm is further supplemented by a content-based recommendation approach to generate comprehensive and refined recommendation results. Experimental findings demonstrate that the predictive scoring errors, as measured by RMSE and MAE, exhibited a downward trend when the number of nearest neighbors for target users fell within the range of 10–20. For instance, the studied algorithm’s MAE value decreased from 0.7512 to 0.7179, surpassing the corresponding figures for the two comparison algorithms. Moreover, with an increase in the number of nearest neighbors within the same range, all three algorithms experienced improved accuracy in prediction results. In particular, the accuracy rate rose from 17.84% to 18.82%, outperforming the two comparison algorithms. In summary, the enhanced hybrid recommendation algorithm achieved through this study displays superior recommendation accuracy and holds significant practical value.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3