Persian Handwritten Number Recognition Using Adapted Framing Feature and Support Vector Machines

Author:

Sajedi Hedieh1,Bahador Mehran2

Affiliation:

1. Department of Computer Science, School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran

2. Department of Electrical, Computer and Biomedical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Abstract

In this paper, a new approach for segmentation and recognition of Persian handwritten numbers is presented. This method utilizes the framing feature technique in combination with outer profile feature that we named this the adapted framing feature. In our proposed approach, segmentation of the numbers into digits has been carried out automatically. In the classification stage of the proposed method, Support Vector Machines (SVM) and k-Nearest Neighbors (k-NN) are used. Experimentations are conducted on the IFHCDB database consisting 17,740 numeral images and HODA database consisting 102,352 numeral images. In isolated digit level on IFHCDB, the recognition rate of 99.27%, is achieved by using SVM with polynomial kernel. Furthermore, in isolated digit level on HODA, the recognition rate of 99.07% is achieved by using SVM with polynomial kernel. The experiments illustrate that applying our proposed method resulted higher accuracy compared to previous researches.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3