Multi-Scale Deep Residual Shrinkage Network for Atrial Fibrillation Recognition

Author:

Shi Dayin1,Wu Zhiyong1,Zhang Longbo1,Hu Benjia1,Meng Ke1

Affiliation:

1. School of Computer Science and Technology, Shandong University of Technology, No. 266 New Village West Road, Zibo, Shandong 255000, P. R. China

Abstract

In this paper, a novel multi-scale deep residual shrinkage network (MS-DRSN) is proposed for signal denoising and atrial fibrillation (AF) recognition. Signal denoising is done by multi-scale threshold denoising module (MS-TDM), which consists of two parts: threshold acquisition and threshold denoising. The thresholds are automatically obtained through the global attention module constructed by the neural network. Threshold denoising chooses Garrote as the threshold function, which combines the advantages of soft and hard thresholding. The multi-scale features consist of global attention module and local attention module, and then the multi-scale features are denoised using the acquired thresholds and threshold functions, and the AF recognition task is finally completed in the Softmax layer after the superposition of multiple MS-TDMs. An adaptive synthetic sampling (ADASYN) algorithm is also used to oversample the dataset and achieve data category balancing by generating new samples, which improves the accuracy of AF recognition and alleviates the overfitting of the neural network. This method was experimented and validated on the PhysioNet2017 dataset. The experimental results show that the approach achieves an accuracy of 0.894 and an [Formula: see text] score of 0.881, which is better than current machine learning and deep learning models.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3