Regularized Semi-Supervised Metric Learning with Latent Structure Preserved

Author:

Wang Qianying1,Lu Ming2,Li Meng1,Guan Fei1

Affiliation:

1. College of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang 050000, P. R. China

2. School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050000, P. R. China

Abstract

Metric learning is a critical problem in classification. Most classifiers are based on a metric, the simplest one is the KNN classifier, whose outcome is directly decided by the given metric. This paper will discuss semi-supervised metric learning. Most traditional semi-supervised metric learning algorithms preserve the local structure of all the samples (including labeled and unlabeled) in the input space, when making the same labeled samples together and separating different labeled samples. In most existing methods, the local structure is calculated by the Euclidean distance which uses all the features. As we all know, high dimensional data lies on a low dimension manifold, and not all the features are discriminative. Thus, in this paper, we try to explore the latent structure of the samples and use the more discriminative features to calculate the local structure. The latent structure is learned by clustering random forest and cast into similarity between samples. Based on the hierarchical structure of the trees and the split function, the similarity is obtained from discriminant features. Experimental results on public data sets show our algorithm outperforms the traditional similar related algorithms.

Funder

NSF of China

Science and Technology Project of Hebei Education Department

Hebei University of Economics and Business Foundation

Natural Science Foundation of Hebei Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3