MULTI-OBJECTIVE GA-OPTIMIZED INTERPOLATION KERNELS FOR RECONSTRUCTION OF HIGH RESOLUTION EMR IMAGES FROM LOW-SAMPLED K-SPACE DATA

Author:

BALASUBRAMANIAN D.1,KRISHNA MURALI C.2,MURUGESAN R.3

Affiliation:

1. AGP College, Sivakasi, India

2. National Cancer Institute, Bethesda, MD, USA

3. Madurai Kamaraj University, Madurai, India

Abstract

The low-frequency instrumentation and imaging capabilities facilitate electron magnetic resonance imaging (EMRI) as an emerging non-invasive imaging technology for mapping free radicals in biological systems. Unlike MRI, EMRI is implemented as a pure phase–phase encoding technique. The fast bio-clearance of the imaging agent and the requirement to reduce radio frequency power deposition dictate collection of reduced k-space samples, compromising the quality and resolution of the EMR images. The present work evaluates various interpolation kernels to generate larger k-space samples for image reconstruction, from the acquired reduced k-space samples. Using k-space EMR data sets, acquired for phantom as well as live mice, the proposed technique is critically evaluated by computing quality metrics viz. signal-to-noise ratio (SNR), standard deviation error (SDE), root mean square error (RMSE), peak signal-to-noise ratio (PSNR), contrast-to-noise ratio (CNR) and Lui's error function (F(I)). The quantitative evaluation of 24 different interpolation functions (including piecewise polynomial functions and many windowed sinc functions) to upsample the k-space data for the Fourier EMR image reconstruction shows that at the expense of a slight increase in computing time, the reconstructed images from upsampled data, produced using Spline-sinc, Welch-sinc, and Gaussian-sinc kernels, are closer to reference image with minimal distortion. Support of the interpolating kernel is a characteristic parameter deciding the quality of the reconstructed image and the time complexity. In this paper, a method to optimize the kernel support using genetic algorithm (GA) is also explored. Maximization of the fitness function has two conflicting objectives and it is approached as a multi-objective optimization problem.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3