Affiliation:
1. Department of Electronics and Communication Engineering, Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India
Abstract
Nitrosamine is a carcinogenic chemical used as a preservative in red meat whose identification is an ordeal. This paper presents a computer vision-based non-destructive method for identifying quality disparities between preservative treated and untreated (control) red meat. To access the discrepancy in the quality of red meat, both traditional machine learning and deep learning-based methods have been used. Support vector machine (SVM) classifier and artificial neural network (ANN) models have been used to detect the presence of nitrosamine in test samples. The paper also made use of different pre-trained deep convolutional neural networks (DCNN) with transfer learning approach such as ResNet-34, ResNet-50, ResNet-101, VGG-16, VGG-19, AlexNet and MobileNetv2 to examine the presence of nitrosamine in the food samples. While the ANN classifier performed better in comparison to the SVM classifier, the highest testing accuracy and F1-score were obtained using the deep learning model, ResNet-101 with 95.45% and 96.54%, respectively. The experimental results demonstrate an improved performance in comparison to the existing methods; indicating the feasibility of the proposed work for food quality control in real-time applications.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Theoretical Computer Science,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献