ESTIMATION OF MUSCLE FORCE DERIVED FROM IN VIVO MR ELASTOGRAPHY TESTS: A PRELIMINARY STUDY

Author:

Bensamoun Sabine F.1,Dao Tien Tuan1,Charleux Fabrice2,Ho Ba Tho Marie-Christine1

Affiliation:

1. Biomechanics and Bioengineery Laboratory, UMR CNRS 7338, Université de Technologie de Compiègne, Compiègne, France

2. ACRIM-Polyclinique Saint Côme, Compiègne, France

Abstract

The objective is to estimate the vastus medialis (VM) muscle force from multifrequency magnetic resonance elastography (MMRE) tests and two different rheological models (Voigt and springpot). Healthy participants (N = 13) underwent multifrequency (70, 90 and 110 Hz) magnetic resonance elastography MMRE tests. Thus, in vivo experimental elastic (μ) properties of the VM in passive and active (20% MVC) conditions were characterized. Moreover, the muscle viscosity (η) was determined with Voigt and springpot rheological models, in both muscle states. Subsequently, the VM muscle forces were calculated with a generic musculoskeletal model (OpenSIM) where the active and passive shear moduli (μ) were implemented. The viscosity measured with the two rheological models increased when the muscle is contracted. During the stance and the swing phases, the VM tensile forces decrease and the VM force was lower with the springpot model. It can be noted that during the swing phase, the muscle forces estimated from springpot model showed a higher standard deviation compared to the Voigt model. This last result may indicate a strong sensitivity of the muscle force to the change of active and passive contractile components in the swing phase of gait. This study provides for the first time an estimation of the muscle tensile forces for lower limb, during human motion, from in vivo experimental muscle mechanical properties. The assessment of individualized muscle forces during motion is valuable for finite element models, increasing the patient specific parameters. This novel muscle database will be of use for the clinician to better elucidate the muscle pathophysiology and to better monitor the effects of the muscle disease.

Publisher

World Scientific Pub Co Pte Lt

Subject

Orthopedics and Sports Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3