BREAKDOWN OF LIBRATIONAL INVARIANT SURFACES

Author:

ANDREU MIQUEL ANGEL1,CELLETTI ALESSANDRA2,FALCOLINI CORRADO3

Affiliation:

1. Departimento Matemàtica Aplicada i Anàlisi, Universitá Barcelona Gran Via 585, 08007-Barcelona, Spain

2. Dipartimento di Matematica, Universitá di L'Aquila, 67100-L'Aquila, Italy

3. Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133-Roma, Italy

Abstract

A numerical investigation of the stability of invariant librational tori is presented. The method has been developed for a model describing the spin-orbit coupling in Celestial Mechanics. Periodic orbits approaching the librational torus are computed by means of Newton's method. According to Greene's criterion, their stability is strictly related to the survival of invariant tori. We consider librational tori around the main spin-orbit resonances (1:1, 3:2). Their existence provides the stability of the resonances, due to the confinement properties in the three-dimensional phase space associated to our model. The results are consistent with the actual observations of the eccentricity and of the oblateness parameter. A different behavior of the Moon and Mercury around the main resonances is evidenced, providing interesting suggestions about the different probabilities of capture in a resonance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3