Bistability and Bifurcations of Tumor Dynamics with Immune Escape and the Chimeric Antigen Receptor T-Cell Therapy

Author:

Wang Shaoli1,Wang Tengfei2,Bai Xiyan1,Ji Shaoping3,Tian Tianhai4ORCID

Affiliation:

1. School of Mathematics and Statistics, Henan University, Kaifeng 475001, Henan, P. R. China

2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, Hubei, P. R. China

3. Henan International Joint Laboratory for Nuclear Protein Regulation, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Kaifeng 475004, P. R. China

4. School of Mathematical Sciences, Monash University, Wellington Rd, Clayton VIC 3800, Australia

Abstract

Tumor immune escape refers to the inability of the immune system to clear tumor cells, which is one of the major obstacles in designing effective treatment schemes for cancer diseases. Although clinical studies have led to promising treatment outcomes, it is imperative to design theoretical models to investigate the long-term treatment effects. In this paper, we develop a mathematical model to study the interactions among tumor cells, immune escape tumor cells, and T lymphocyte. The chimeric antigen receptor (CAR) T-cell therapy is also described by the mathematical model. Bifurcation analysis shows that there exists backward bifurcation and saddle-node bifurcation when the immune intensity is used as the bifurcation parameter. The proposed model also exhibits bistability when its parameters are located between the saddle-node threshold and backward bifurcation threshold. Sensitivity analysis is performed to illustrate the effects of different mechanisms on the backward bifurcation threshold and basic immune reproduction number. Simulation studies confirm the bifurcation analysis results and predict various types of treatment outcomes using different CAR T-cell therapy strengths. Analysis and simulation results show that the immune intensity can be used to control the tumor size, but it has no effect on the control of the immune escape tumor size. The introduction of the CAR T-cell therapy will reduce the immune escape tumor size and the treatment effect depends on the CAR T-cell therapy strength.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3