Affiliation:
1. Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma, Italy
Abstract
We study the stability of a vector field associated to a nearly-integrable Hamiltonian dynamical system to which a dissipation is added. Such a system is governed by two parameters, namely the perturbing and dissipative parameters, and it depends on a drift function. Assuming that the frequency of motion satisfies some resonance assumption, we investigate the stability of the dynamics, and precisely the variation of the action variables associated to the conservative model. According to the structure of the vector field, one can find linear and long-term stability times, which are established under smallness conditions of the parameters. We also provide some applications to concrete examples, which exhibit a linear or long-term stability behavior.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献