CONTINUOUS-TIME QUANTUM WALKS AND TRAPPING

Author:

AGLIARI ELENA12,MÜLKEN OLIVER1,BLUMEN ALEXANDER1

Affiliation:

1. Theoretische Polymerphysik, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany

2. Dipartimento di Fisica, Università degli Studi di Parma, viale Usberti 7/A, 43100 Parma, Italy

Abstract

Recent findings suggest that processes such as the excitonic energy transfer through the photosynthetic antenna display quantal features, aspects known from the dynamics of charge carriers along polymer backbones. Hence, in modeling energy transfer one has to leave the classical, master-equation-type formalism and advance towards an increasingly quantum-mechanical picture, while still retaining a local description of the complex network of molecules involved in the transport, say through a tight-binding approach. Interestingly, the continuous time random walk (CTRW) picture, widely employed in describing transport in random environments, can be mathematically reformulated to yield a quantum-mechanical Hamiltonian of tight-binding type; the procedure uses the mathematical analogies between time-evolution operators in statistical and in quantum mechanics: The result are continuous-time quantum walks (CTQWs). However, beyond these formal analogies, CTRWs and CTQWs display vastly different physical properties. In particular, here we focus on trapping processes on a ring and show, both analytically and numerically, that distinct configurations of traps (ranging from periodical to random) yield strongly different behaviors for the quantal mean survival probability, while classically (under ordered conditions) we always find an exponential decay at long times.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3