Affiliation:
1. College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
Abstract
The nonlinear dynamic responses of a string-beam coupled system subjected to harmonic external and parametric excitations are studied in this work in the case of 1:2 internal resonance between the modes of the beam and string. First, the nonlinear governing equations of motion for the string-beam coupled system are established. Then, the Galerkin's method is used to simplify the nonlinear governing equations to a set of ordinary differential equations with four-degrees-of-freedom. Utilizing the method of multiple scales, the eight-dimensional averaged equation is obtained. The case of 1:2 internal resonance between the modes of the beam and string — principal parametric resonance-1/2 subharmonic resonance for the beam and primary resonance for the string — is considered. Finally, nonlinear dynamic characteristics of the string-beam coupled system are studied through a numerical method based on the averaged equation. The phase portrait, Poincare map and power spectrum are plotted to demonstrate that the periodic and chaotic motions exist in the string-beam coupled system under certain conditions.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献