Affiliation:
1. Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P. R. China
Abstract
Previous studies assumed that the reaction processes in the chemical Brusselator model are memoryless or Markovian. However, as long as a reactant interacts with its environment, the reaction kinetics cannot be described as a memoryless process. This raises a question: how do we predict the behavior of the chemical Brusselator system with molecular memory characterized by nonexponential waiting-time distributions? Here, a novel technique is developed to address this question. This technique converts a non-Markovian question to a Markovian one by introducing effective transition rates that explicitly decode the memory effect. Based on this conversion, it is analytically shown that molecular memory can induce bifurcations and oscillations. Moreover, a set of sufficient conditions are derived, which can guarantee that the system of the rate equations for the Markovian reaction system generates oscillations via memory index-induced bifurcation. In turn, these conditions can guarantee that the original non-Markovian reaction system generates stochastic oscillations. Numerical simulation verifies the theoretical prediction. The overall analysis indicates that molecular memory is not a negligible factor affecting a chemical system’s behavior.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献