Bifurcations in a Time-Delayed Birhythmic Biological System with Fractional Derivative and Lévy Noise

Author:

Zhang Wenting1,Xu Wei1ORCID,Guo Qin1,Zhang Hongxia1

Affiliation:

1. Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi 710129, P. R. China

Abstract

The birhythmic oscillation is of great significance in biology and engineering, and this paper presents a bifurcation analysis in a time-delayed birhythmic oscillator containing fractional derivative and Lévy noise. The numerical method is used to explore the influence of various parameters on the bifurcation of the birhythmic system, and the role of fractional derivative and Lévy noise in inducing or inhibiting birhythmicity in a time-delayed birhythmic biological system is examined in this work. First, we use a numerical method to calculate the fractional derivative, which has a fast calculation speed. Then the McCulloch algorithm is employed to generate Lévy random numbers. Finally, the stationary probability density function graph of the amplitude is obtained by Monte Carlo simulation. The results show that the fractional damping and Lévy noise can effectively control the characteristics of the birhythmic oscillator, and the change of the parameters (except the skewness parameter) can cause the system bifurcation. In addition, this article further discusses the interaction of fractional derivative and time delay in a birhythmic system with Lévy noise, proving that adjusting parameters of time delay can lead to abundant bifurcations. Our research may help to further explore the bifurcation phenomenon of birhythmic biological system, and has a practical significance.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3