Affiliation:
1. Research Center for Astronomy, Academy of Athens, Soranou Efesiou 4, GR-11527, Athens, Greece
2. Section of Astrophysics, Astronomy, and Mechanics, Department of Physics, University of Athens, Panepistimiopolis Zografos GR15783, Athens, Greece
Abstract
We study the orbits in a Manko–Novikov type metric (MN) which is a perturbed Kerr metric. There are periodic, quasi-periodic, and chaotic orbits, which are found in configuration space and on a surface of section for various values of the energy E and the z-component of the angular momentum Lz. For relatively large Lz there are two permissible regions of nonplunging motion bounded by two closed curves of zero velocity (CZV), while in the Kerr metric there is only one closed CZV of nonplunging motion. The inner permissible region of the MN metric contains mainly chaotic orbits, but it contains also a large island of stability. When Lz decreases, the two permissible regions join and chaos increases. Below a certain value of Lz, most orbits escape inwards and plunge through the horizon. On the other hand, as the energy E decreases (for fixed Lz) the outer permissible region shrinks and disappears. In the inner permissible region, chaos increases and for sufficiently small E most orbits are plunging. We find the positions of the main periodic orbits as functions of Lz and E, and their bifurcations. Around the main periodic orbit of the outer region, there are islands of stability that do not appear in the Kerr metric (integrable case). In a realistic binary system, because of the gravitational radiation, the energy E and the angular momentum Lz of an inspiraling compact object decrease and therefore the orbit of the object is nongeodesic. In fact, in an extreme mass ratio inspiraling (EMRI) system the energy E and the angular momentum Lz decrease adiabatically and therefore the motion of the inspiraling object is characterized by the fundamental frequencies which are drifting slowly in time. In the Kerr metric, the ratio of the fundamental frequencies changes strictly monotonically in time. However, in the MN metric when an orbit is trapped inside an island the ratio of the fundamental frequencies remains constant for some time. Hence, if such a phenomenon is observed this will indicate that the system is nonintegrable and therefore the central object is not a Kerr black hole.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献