CHAOS AND CHAOTIC TRANSIENTS IN A FORCED MODEL OF THE ECONOMIC LONG WAVE: THE ROLE OF HOMOCLINIC BIFURCATION TO INFINITY

Author:

STURIS JEPPE1,BRØNS MORTEN2

Affiliation:

1. University of Chicago, Department of Medicine, MC1027, Chicago, IL 60637, USA

2. Mathematical Institute, The Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract

When an autonomous system of ordinary differential equations exhibits limit cycle behavior but is close in parameter space to a homoclinic bifurcation to infinity in which the limit cycle blows up to infinite amplitude and disappears, periodic forcing of the system may result in the appearance of both chaos and chaotic transients. In this paper, we use numerical techniques to map out Arnol’d tongues of a forced model of the economic long wave and illustrate how the system becomes chaotic and also exhibits chaotic transients for certain parameter combinations. Based on linearizations at infinity, we argue that infinity acts like a saddle with stable and unstable manifolds. By numerical computation, we show that chaotic transients occur when the manifolds intersect. Depending on parameters, two types of bifurcations have been identified: A chaotic attractor blows up to infinite size and disappears or the boundary of the basin of attraction of a periodic solution becomes fractal.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3