Classification of Bifurcations of Quasi-Periodic Solutions Using Lyapunov Bundles

Author:

Kamiyama Kyohei1,Komuro Motomasa2,Endo Tetsuro1,Aihara Kazuyuki3

Affiliation:

1. Department of Electronics and Bioinformatics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan

2. Center for Fundamental Education, Teikyo University of Science, 2525 Yatsusawa, Uenohara-shi, Yamanashi 409-0193, Japan

3. Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan

Abstract

In continuous-time dynamical systems, a periodic orbit becomes a fixed point on a certain Poincaré section. The eigenvalues of the Jacobian matrix at this fixed point determine the local stability of the periodic orbit. Analogously, a quasi-periodic orbit (2-torus) becomes an invariant closed curve (ICC) on a Poincaré section. From the Lyapunov exponents of an ICC, we can determine the time average of the exponential divergence rate of the orbit, which corresponds to the eigenvalues of a fixed point. We denote the Lyapunov exponent with the smallest nonzero absolute value as the Dominant Lyapunov Exponent (DLE). A local bifurcation manifests as a crossing or touch of the DLE locus with zero. However, the type of bifurcation cannot be determined from the DLE. To overcome this problem, we define the Dominant Lyapunov Bundle (DLB), which corresponds to the dominant eigenvectors of a fixed point. We prove that the DLB of a 1-torus in a map can be classified into four types: A+(annulus and orientation preserving), A-(annulus and orientation reversing), M (Möbius band), and F (focus). The DLB of a 2-torus in a flow can be classified into three types: A+× A+, A-× M (equivalently M × A-and M × M), and F × F. From the results, we conjecture the possible local bifurcations in both cases. For the 1-torus in a map, we conjecture that type A+and A-DLBs correspond to a saddle-node and period-doubling bifurcations, respectively, whereas a type M DLB denotes a double-covering bifurcation, and type F relates to a Neimark–Sacker bifurcation. Similarly, for the 2-torus in a flow, we conjecture that type A+× A+DLBs correspond to saddle-node bifurcations, type A-× M DLBs to double-covering bifurcations, and type F × F DLBs to the Neimark–Sacker bifurcations. After introducing the mathematical concepts, we provide a DLB-calculating algorithm and illustrate all of the above bifurcations by examples.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3