Affiliation:
1. Department of Mathematics, Shandong University, Weihai, Shandong 264209, P. R. China
Abstract
The study of the strange nonchaotic attractors is an interesting topic, where the dynamics are neither regular nor chaotic (the word chaotic means the positive Lyapunov exponents), and the shape of the attractors has complicated geometry structure, or fractal structure. It is found that in a class of planar first-order nonautonomous systems, it is possible that there exist attractors, where the shape of the attractors is regular, the orbits are transitive on the attractors, and the dynamics are not chaotic. We call this type of attractors as regular nonchaotic attractors with positive plural, which are different from the strange nonchaotic attractors, attracting fixed points, or attracting periodic orbits. Several examples with computer simulations are given. The first two examples have annulus-shaped attractors. Another two examples have disk-shaped attractors. The last two examples with externally driven terms at two incommensurate frequencies have regular nonchaotic attractors with positive plural, implying that the existence of externally driven terms at two incommensurate frequencies might not be the sufficient condition to guarantee that the system has strange nonchaotic attractors.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献