Digital Bifurcation Analysis of Internet Congestion Control Protocols

Author:

Beneš Nikola1,Brim Luboš1,Pastva Samuel1,Šafránek David1

Affiliation:

1. Faculty of Informatics, Masaryk Univesrity, Botanicka 68a, 60200 Brno, Czech Republic

Abstract

Digital bifurcation analysis is a new algorithmic method for exploring how the behavior of a parameter-dependent discrete system varies with a change in its parameters and, in particular, for the identification of bifurcation points where such variation becomes dramatic. We have developed the method in an analogy with the traditional bifurcation theory and have successfully applied it to models taken from systems biology. In this paper, we report on the application of the digital bifurcation analysis for analyzing the stability of internet congestion control protocols by inspecting their attractor bifurcations. In contrast to the analytical methods, our approach allows fully automated analysis. We compared the robustness of the basic Random Early Drop (RED) approach with four substantially different extensions, namely gentle, adaptive, gradient descent, and integral feedback RED. The basic RED protocol is well known to exhibit unstable behavior when parameters are varied. In the case of adaptive and gradient descent RED protocol, the analysis showed significant improvements in stability, whereas in the results for gentle and integral feedback RED protocols the improvement was negligible. We performed a series of model simulations, the results of which were in accordance with our bifurcation analysis. Based on our results, we can recommend both adaptive and gradient descent RED to improve the robustness of the RED protocol.

Funder

the Czech Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3