Affiliation:
1. Department of Mathematics, Visva-Bharati, Santiniketan 731235, West Bengal, India
2. Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai, India
3. Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
Abstract
In a food chain, the role of intake patterns of predators is very influential on the survival and extinction of the interacting species as well as the entire dynamics of the ecological system. In this study, we investigate the affluent and intricate dynamics of a simple three-species food chain model in a discrete-time framework by analyzing the parameter plane of the system with simultaneous changes of two crucial parameters, the predation rates of middle and top predators. From the theoretical viewpoint, we study the model by determining the fixed points’ biological feasibility and local asymptotic stability criteria, and performing some analyses of local bifurcations, namely, transcritical, flip, and Neimark–Sacker bifurcations. Here, we initiate the numerical simulation by plotting the changes of the prey population density in terms of a vital parameter of the system, and we observe the switching among different dynamical behaviors of the system. We also draw some phase portraits and plot the time series solutions to show the diverse characteristics of the system dynamics. Further, we move one step ahead to explore the intricate dynamical scenarios appearing in the parameter plane by forming Lyapunov exponent and isoperiodic diagrams. In the parameter plane of the system, we see the emergence of innumerable Arnold tongues. All these Arnold tongues are organized along a particular direction, and the beautiful arrangement of these tongues forms several kinds of period-adding sequences. The study sheds more light on various types of multistability occurring in the model system. We see the coexistence of three periodic attractors in the parameter plane. In this study, the most striking observation is the coexistence of four periodic attractors, which occurs infrequently in ecological systems. We draw the basins of attraction for the tristable and tetrastable attractors, which are complex Wada basins. A system with Wada basin is very sensitive to initial conditions and more erratic in nature than a system with fractal basin. Also, we plot the density of all interacting species in terms of the predation rates of middle and top predators and observe the variation in the population densities of all species with the variability of these two key parameters. In the parameter plane created by the simultaneous changes of two parameters, the system exhibits a variety of intricate and subtle dynamics, which cannot be found by changing only a single parameter.
Funder
Junior Research Fellowship program
Senior Research Fellowship program
Publisher
World Scientific Pub Co Pte Ltd