Affiliation:
1. Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
Abstract
The main purpose of this paper is to investigate a parametric topological entropy for impulsive differential inclusions on tori. In this way, besides other matters, we would like to extend our recent results concerning impulsive differential equations as well as those on “nonparametric” topological entropy to impulsive differential inclusions. Parametric topological entropy, which is usually called a topological entropy for nonautonomous dynamical systems, is considered here via the compositions of associated multivalued Poincaré translation operators with the single-valued time-dependent impulsive maps. On compact polyhedra and, in particular on tori, parametric topological entropy for families of admissible multivalued maps can be estimated from below by means Ivanov-type inequality in terms of the asymptotic Nielsen and Lefschetz numbers which are, unlike the topological entropy, homotopy invariants. In the scalar case, an effective criterion for a positive parametric topological entropy can be given by topological degree arguments for equi-continuous impulsive maps. In a single-valued nonparametric case, a positive topological entropy usually signifies topological chaos. Some simple illustrative examples are provided.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献