The Effects of Symmetry Breaking Perturbation on the Dynamics of a Novel Chaotic System with Cyclic Symmetry: Theoretical Analysis and Circuit Realization

Author:

Kengne Jacques12,Dountsop Sandrine Zoulewa12,Chedjou Jean Chamberlain34,Nosirov Khabibullo4

Affiliation:

1. Laboratoire d’Automatique et Informatique Appliquée (LAIA), Department of Electrical Engineering, IUT-FV Bandjoun, University of Dschang, Cameroon

2. Laboratory of Electronics and Signal Processing, Department of Physics, University of Dschang, P. O. Box 67, Dschang, Cameroon

3. Institute for Smart-Systems Technologies, University of Klagenfurt, Austria

4. Department of Television and Radio Broadcasting Systems, Tashkent University of Information Technologies named after, Muhammad al-Khwarizmi, Tashkent, Uzbekistan

Abstract

Symmetry is an important property shared by a large number of nonlinear dynamical systems. Although the study of nonlinear systems with a symmetry property is very well documented, the literature has no sufficient investigation on the important issues concerning the behavior of such systems when their symmetry is broken or altered. In this work, we introduce a novel autonomous 3D system with cyclic symmetry having a piecewise quadratic nonlinearity [Formula: see text] where parameter [Formula: see text] is fixed and parameter [Formula: see text] controls the symmetry and the nonlinearity of the model. Obviously, for [Formula: see text] the system presents both cyclic and inversion symmetries while the inversion symmetry is explicitly broken for [Formula: see text]. We consider in detail the dynamics of the new system for both two regimes of operation by using classical nonlinear analysis tools (e.g. bifurcation diagrams, plots of largest Lyapunov exponents, phase space trajectory plots, etc.). Several nonlinear patterns are reported such as period doubling, periodic windows, parallel bifurcation branches, hysteresis, transient chaos, and the coexistence of multiple attractors of different topologies as well. One of the most gratifying features of the new system introduced in this work is the existence of several parameter ranges for which up to twelve disconnected periodic and chaotic attractors coexist. This latter feature is rarely reported, at least for a simple system like the one discussed in this work. An electronic analog device of the new cyclic system is designed and implemented in PSpice. A very good agreement is observed between PSpice simulation and the theoretical results.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3