Affiliation:
1. School of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
Abstract
In this paper, a predator–prey model with prey-stage structure and prey-taxis is proposed and studied. Firstly, the local stability of non-negative constant equilibria is analyzed. It is shown that non-negative equilibria have the same stability between ODE system and self-diffusion system, and self-diffusion does not have a destabilization effect. We find that there exists a threshold value [Formula: see text] such that the positive equilibrium point of the model becomes unstable when the prey-taxis rate [Formula: see text], hence the taxis-driven Turing instability occurs. Furthermore, by applying Crandall–Rabinowitz bifurcation theory, the existence, the stability and instability, and the turning direction of bifurcating steady state are investigated in detail. Finally, numerical simulations are provided to support the mathematical analysis.
Funder
the National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献