CHAOS, SELF ORGANIZED CRITICALITY, INTERMITTENT TURBULENCE AND NONEXTENSIVITY REVEALED FROM SEISMOGENESIS IN NORTH AEGEAN AREA

Author:

ILIOPOULOS A. C.1,PAVLOS G. P.1,PAPADIMITRIOU E. E.2,SFIRIS D. S.3,ATHANASIOU M. A.4,TSOUTSOURAS V. G.1

Affiliation:

1. Department of Electrical Engineering and Computer Engineering, Democritus University of Thrace, Kimmeria University Campus, Xanthi 67100, Greece

2. Department of Geophysics, Aristotle University of Thessaloniki, Thessaloniki GR54124, Greece

3. Department of Civil Engineering, Democritus University of Thrace, Xanthi GR67100, Greece

4. Department of Information and Communications, Technical University of Serres, Greece GR67100, Greece

Abstract

Strong evidence is provided for significant far from equilibrium complex processes in the seismogenic layer of the North Aegean region (Greece), after applying modern nonlinear methods to various seismicity time series. The data used are subsets of the regional catalogue compiled in the central Seismological Station of Geophysics Department, Aristotle University of Thessaloniki and concern 4367 earthquakes of magnitude greater than 3.8, which took place during the period of 1968–2008. We present results, derived from the application of nonlinear algorithms, concerning the estimation of correlation dimension, mutual information, largest Lyapunov exponent, flatness coefficient and q-value which correspond to Tsallis nonextensive statistics. These quantities are estimated for two seismic time series corresponding to the basic focal parameters of earthquakes, namely origin time and magnitude. The obtained results can be associated with novel far from equilibrium complex dynamics such as low dimensional chaos, Self Organized Criticality (SOC) and intermittent turbulence. Furthermore, in this study, new information is provided about the nonlinear turbulent character of the Hellenic lithospheric dynamics related to the Tsallis nonextensive statistical theory. Our analysis indicates the coexistence of two different lithospheric processes, one low dimensional (chaotic) and the other high dimensional (SOC), revealing the strongly turbulent character of the Greek lithospheric system. In particular, the low dimensional chaotic process corresponds to the temporal manifestation of earthquakes, whereas the high dimensional nonlinear (SOC) process corresponds to the burst energy releases, a result that has significant implications concerning the ability of earthquake prediction.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3