Affiliation:
1. Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
Abstract
A delayed predator–prey system with diffusion and Dirichlet boundary conditions is considered. By regarding the growth rate a of prey as a main bifurcation parameter, we show that Hopf bifurcation occurs when the parameter a is varied. Then, by using the center manifold theory and normal form method, an explicit algorithm for determining the direction of the Hopf bifurcations and stability of the bifurcating periodic solutions is derived.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献