Affiliation:
1. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, CA 94720, USA
Abstract
Discrete-time CNN systems are studied in this paper by the application of Chua's local activity principle. These systems are locally active everywhere except for one isolated parameter value. As a result, nonhomogeneous spatiotemporal patterns may be induced by any initial setting of the CNN system when the strength of the system diffusion coupling exceeds a critical threshold. The critical coupling coefficient can be derived from the loaded cell impedance of the CNN system. Three well-known 1D map CNN's (namely, the logistic map CNN, the magnetic vortex pinning map CNN, and the spiral wave reproducing map CNN) are introduced to illustrate the applications of the local activity principle. In addition, we use the cell impedance to demonstrate the period-doubling scenario in the logistic and the magnetic vortex pinning maps.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献