Affiliation:
1. Intelligent Electronic System (IES) Research Laboratory, Faculty of Engineering, Thai-Nichi Institute of Technology (TNI), 1771/1 Pattanakarn Rd., Suanluang, Bangkok 10250, Thailand
Abstract
This paper presents a simple autonomous chaotic oscillator. The design method is primarily based on a linear oscillator constructed by a closed loop connection of two building blocks, i.e. an inverting active integrator and a passive second-order LC integrator. A diode is inserted in parallel to the two building blocks for inducing chaos. The mathematical model reveals a set of three-dimensional ordinary differential equations, containing seven terms with four constants and an exponential nonlinearity. The dynamics properties are investigated in terms of an equilibrium point, Jacobian matrix, chaotic attractors, bifurcation, Lyapunov exponents, and chaotic waveforms in time domain. The proposed chaotic oscillator potentially exhibits complex dynamical behaviors through the utilization of only six minimal electronic components.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献