Affiliation:
1. Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, Szeged, H-6720, Hungary
Abstract
We consider three connected populations with strong Allee effect, and give a complete classification of the steady state structure of the system with respect to the Allee threshold and the dispersal rate, describing the bifurcations at each critical point where the number of steady states change. One may expect that by increasing the dispersal rate between the patches, the system would become more well-mixed, hence simpler. However, we show that it is not always the case, and the number of steady states may (temporarily) go up by increasing the dispersal rate. Besides sequences of pitchfork and saddle-node bifurcations, we find triple-transcritical bifurcations and also a sun-ray shaped bifurcation where twelve steady states meet at a single point then disappear. The major tool of our investigations is a novel algorithm that decomposes the parameter space with respect to the number of steady states and finds the bifurcation values using cylindrical algebraic decomposition with respect to the discriminant variety of the polynomial system.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献