SLIDING BIFURCATIONS: A NOVEL MECHANISM FOR THE SUDDEN ONSET OF CHAOS IN DRY FRICTION OSCILLATORS

Author:

DI BERNARDO M.1,KOWALCZYK P.1,NORDMARK A.2

Affiliation:

1. Department of Engineering Mathematics, University of Bristol, BS8 1TR, UK

2. Department of Mechanics, Royal Institute of Technology, Sweden

Abstract

Recent investigations of nonsmooth dynamical systems have resulted in the study of a class of novel bifurcations termed as sliding bifurcations. These bifurcations are a characteristic feature of so-called Filippov systems, that is, systems of ordinary differential equations (ODEs) with discontinuous right-hand sides. In this paper we show that sliding bifurcations also play an important role in organizing the dynamics of dry friction oscillators, which are a subclass of nonsmooth systems. After introducing the possible codimension-1 sliding bifurcations of limit cycles, we show that these bifurcations organize different types of "slip to stick-slip" transitions in dry friction oscillators. In particular, we show both numerically and analytically that a sliding bifurcation is an important mechanism causing the sudden jump to chaos previously unexplained in the literature on friction systems. To analyze such bifurcations we make use of a new analytical method based on the study of appropriate normal form maps describing sliding bifurcations. Also, we explain the circumstances under which the theory of so-called border-collision bifurcations can be used in order to explain the onset of complex behavior in stick-slip systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3